137 research outputs found

    Effect of the unpolarized spin state in spin-correlation measurement of two protons produced in the 12C(d,2He) reaction

    Get PDF
    In this note we discuss the effect of the unpolarized state in the spin-correlation measurement of the 1S0^1S_0 two-proton state produced in 12C(d,2He) reaction at the KVI, Groningen. We show that in the presence of the unpolarized state the maximal violation of the CHSH-Bell inequality is lower than the classical limit if the purity of the state is less than ∼70% \sim \verb+70%+. In particular, for the KVI experiment the violation of the CHSH-Bell inequality should be corrected by a factor ∼10%\sim\verb+10%+ from the pure 1S0^1S_0 state.Comment: 6 pages, to appear in J. Phys.

    Universality of Symmetry and Mixed-symmetry Collective Nuclear States

    Full text link
    The global correlation in the observed variation with mass number of the E2E2 and summed M1M1 transition strengths is examined for rare earth nuclei. It is shown that a theory of correlated SS and DD fermion pairs with a simple pairing plus quadrupole interaction leads naturally to this universality. Thus a unified and quantitative description emerges for low-lying quadrupole and dipole strengths.Comment: In press, Phys. Rev. Lett. 199

    Polarization Correlations of 1S0 Proton Pairs as Tests of Bell and Wigner Inequalities

    Full text link
    In an experiment designed to overcome the loophole of observer dependent reality and satisfying the counterfactuality condition, we measured polarization correlations of 1S0 proton pairs produced in 12C(d,2He) and 1H(d,He) reactions in one setting. The results of these measurements are used to test the Bell and Wigner inequalties against the predictions of quantum mechanics.Comment: 8 pages, 4 figure

    Measurement of K^+ \to \pi^0 \mu^+ \nu \gamma decay using stopped kaons

    Full text link
    The K^+ \to \pi^0 \mu^+ \nu \gamma (Kμ3γK_{\mu 3 \gamma}) decay has been measured with stopped positive kaons at the KEK 12 GeV proton synchrotron. A Kμ3γK_{\mu 3 \gamma} sample containing 125 events was obtained. The partial branching ratio Br(Kμ3γ,Eγ>30MeV,θμ+γ>20∘)Br(K_{\mu 3 \gamma}, E_{\gamma}>30 {\rm MeV}, \theta_{\mu^+ \gamma}>20^{\circ}) was found to be [2.4±0.5(stat)±0.6(syst)]×10−5[2.4 \pm 0.5(stat) \pm 0.6(syst)]\times 10^{-5}, which is in good agreement with theoretical predictions.Comment: 12 pages, 3 figures, to be published in Physics Letters

    First measurement of the T-violating muon polarization in the decay K^+ --> mu^+ nu gamma

    Full text link
    We present the result of the first measurement of the T-violating muon polarization P_T in the decay K^+ --> mu^+ nu gamma. This polarization is sensitive to new sources of CP-violation in the Higgs sector. Using data accumulated in the period 1996-98 we have obtained P_T = (-0.64 +- 1.85(stat) +- 0.10(syst))x10^{-2} which is consistent with no T-violation in this decay.Comment: 11 pages, 8 figure

    Measurement of direct photon emission in K+→π+π0γK^+ \to \pi^+ \pi^0 \gamma decay using stopped positive kaons

    Full text link
    The radiative decay K+→π+π0γK^+ \to \pi^+ \pi^0 \gamma (Kπ2γK_{\pi 2 \gamma}) has been measured with stopped positive kaons. A Kπ2γK_{\pi 2 \gamma} sample containing 4k events was analyzed, and the Kπ2γK_{\pi 2 \gamma} branching ratio of the direct photon emission process was determined to be [6.1±2.5(stat)±1.9(syst)]×10−6[6.1\pm2.5({\rm stat})\pm1.9({\rm syst})]\times 10^{-6}. No interference pattern with internal bremsstrahlung was observed.Comment: 12 pages, 6 figures, 2 tables, to be published in Phys. Lett.

    Solution of the Nuclear Shell Model by Symmetry-Dictated Truncation

    Full text link
    The dynamical symmetries of the Fermion Dynamical Symmetry Model are used as a principle of truncation for the spherical shell model. Utilizing the usual principle of energy-dictated truncation to select a valence space, and symmetry-dictated truncation to select a collective subspace of that valence space, we are able to reduce the full shell model space to one of manageable dimensions with modern supercomputers, even for the heaviest nuclei. The resulting shell model then consists of diagonalizing an effective Hamiltonian within the restricted subspace. This theory is not confined to any symmetry limits, and represents a full solution of the original shell model if the appropriate effective interaction of the truncated space can be determined. As a first step in constructing that interaction, we present an empirical determination of its matrix elements for the collective subspace with no broken pairs in a representative set of nuclei with 130≤A≤250130\le A \le 250. We demonstrate that this effective interaction can be parameterized in terms of a few quantities varying slowly with particle number, and is capable of describing a broad range of low-energy observables for these nuclei. Finally we give a brief discussion of extending these methods to include a single broken collective pair.Comment: invited paper for J. Phys. G, 57 pages, Latex, 18 figures a macro are available under request at [email protected]
    • …
    corecore